Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403658, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738600

RESUMO

The high degree of corrosivity and reactivity of bromine, which is released from various sources poses a serious threat to the environment. Moreover, its coexistence with iodine forming an equilibrium compound, iodine monobromide (IBr) necessitates the selective capture of bromine from halogen mixtures. The electrophilicity of halogens to π-electron rich structures enabled us to strategically design a covalent organic framework for halogen capture, featuring a defined pore environment with localized sorption sites. The higher capture capacity of bromine (4.6 g g-1) over iodine by ~41 % shows its potential in selective capture. Spectroscopic results uncovering the preferential interaction sites are supported by theoretical investigations. The alkyne bridge is a core functionality promoting the selectivity in capture by synergistic physisorption, rationalized by the higher orbital overlap of bromine due to its smaller atomic size as well as reversible chemical interactions. The slip stacking in the structure has further promoted this phenomenon by creating clusters of molecular interaction sites with bromine intercalated between the layers. The inclusion of unsaturated moieties, i.e. triple bonds and the complementary pore geometry offer a promising design strategy for the construction of porous materials for halogen capture.

2.
Chemistry ; 30(2): e202302779, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877583

RESUMO

Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.

3.
Phys Chem Chem Phys ; 25(44): 30237-30245, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921503

RESUMO

Two-dimensional (2D) materials, like 2D covalent organic frameworks (COFs), have been attracting increasing research interest. They are usually obtained as polycrystalline powders. Solid-state NMR spectroscopy is capable of delivering structural information about such materials. Previous studies have applied, for example, 13C cross-polarization magic angle spinning (CP MAS) NMR experiments to characterize 2D COFs. Herein, we demonstrate the usefulness of high-field and fast-spinning 1H MAS NMR spectroscopy to resolve and quantify the signals of different 1H species within 2D COFs, including the edge sites and/or defects. Moreover, 1H-13C heteronuclear correlation (HETCOR) spectroscopy has also been applied and can provide improved resolution to obtain further information about stacking effects as well as edge sites/defects.

4.
J Phys Chem C Nanomater Interfaces ; 127(31): 15454-15460, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37588814

RESUMO

Covalent hybrids of graphene and metal-organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2- = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.

5.
J Am Chem Soc ; 145(25): 13494-13513, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307595

RESUMO

Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.

6.
Adv Mater ; 35(16): e2210151, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719245

RESUMO

The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.

7.
Nat Commun ; 13(1): 7750, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517486

RESUMO

Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.

8.
Chem Commun (Camb) ; 58(92): 12823-12826, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317690

RESUMO

An isoreticular family of metal-organic frameworks is post-synthetically subjected to polymer grafting. Surface hydrophobicity analysis, adsorption experiments, and impedance spectroscopy characterise the water molecules adsorbed, both on the surface and in the pores, while resolving how molecular mobility is impacted.

9.
Chem Rev ; 122(24): 17241-17338, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36318747

RESUMO

Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".


Assuntos
Grafite , Estruturas Metalorgânicas , Catálise , Condutividade Elétrica , Eletrônica
10.
Chem Soc Rev ; 51(21): 9068-9126, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36269060

RESUMO

Metal-organic gels (MOGs) emerged as a novel class of functional soft materials in which the scaffolding framework is fabricated by metal-ligand coordination in combination with other supramolecular interactions (for example, hydrogen bonding or π-π stacking). Through the combination of organic and inorganic (metal/metal-oxo clusters) building blocks, significant steps forward have been made in the development of new electrochemical sensors, superhydrophobic materials and ion storage devices, among others. These leaps forward are to some extend induced by the intrinsic hierarchical microporous/mesoporous pore structure of these metal-organic materials. Within this review we give an overview of recent developments of this growing field. First, we shed light onto the parallels to the well-established field of conventional gels and outline similarities and differences. Afterwards, we classify different types of MOGs according to their architectural/structural nature: (1) pristine MOGs, (2) hybrid MOGs, (3) crosslinking-based MOGs and (4) MOG-derived materials. Furthermore, we look at the different properties of MOGs and the requirements for the preparation of spatially patterned macro-structured MOGs by emerging additive manufacturing technologies. Moreover, different potential fields of application for MOGs and MOG derived materials are critically evaluated and potential improvements and pitfalls in comparison to traditional gel-based materials are given. Finally, a comprehensive outlook into future directions for the development of MOGs is provided.


Assuntos
Metais , Porosidade , Géis/química , Metais/química
11.
J Am Chem Soc ; 144(20): 9101-9112, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543441

RESUMO

Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.

12.
ACS Nano ; 15(11): 17275-17298, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751563

RESUMO

The conversion of nitrogen to ammonia offers a sustainable and environmentally friendly approach for producing precursors for fertilizers and efficient energy carriers. Owing to the large energy density and significant gravimetric hydrogen content, NH3 is considered an apt next-generation energy carrier and liquid fuel. However, the low conversion efficiency and slow production of ammonia through the nitrogen reduction reaction (NRR) are currently bottlenecks, making it an unviable alternative to the traditional Haber-Bosch process for ammonia production. The rational design and engineering of catalysts (both photo- and electro-) represent a crucial challenge for improving the efficiency and exploiting the full capability of the NRR. In the present review, we highlight recent progress in the development of graphene-based systems and graphene derivatives as catalysts for the NRR. Initially, the history, fundamental mechanism, and importance of the NRR to produce ammonia are briefly discussed. We also outline how surface functionalization, defects, and hybrid structures (single-atom/multiatom as well as composites) affect the N2 conversion efficiency. The potential of graphene and graphene derivatives as NRR catalysts is highlighted using pertinent examples from theoretical simulations as well as machine learning based performance predictive methods. The review is concluded by identifying the crucial advantages, drawbacks, and challenges associated with principal scientific and technological breakthroughs in ambient catalytic NRR.

13.
Dalton Trans ; 50(30): 10423-10435, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34240094

RESUMO

The trapping of paraffins is beneficial compared to selective olefin adsorption for adsorptive olefin purification from a process engineering point of view. Here we demonstrate the use of a series of Zn2(X-bdc)2(dabco) (where X-bdc2- is bdc2- = 1,4-benzenedicarboxylate with substituting groups X, DM-bdc2- = 2,5-dimethyl-1,4-benzenedicarboxylate or TM-bdc2- = 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate and dabco = diazabicyclo[2.2.2.]octane) metal-organic frameworks (MOFs) for the adsorptive removal of ethane from ethylene streams. The best performing material from this series is Zn2(TM-bdc)2(dabco) (DMOF-TM), which shows a high ethane uptake of 5.31 mmol g-1 at 110 kPa, with a good IAST selectivity of 1.88 towards ethane over ethylene. Through breakthrough measurements a high productivity of 13.1 L kg-1 per breakthrough is revealed with good reproducibility over five consecutive cycles. Molecular simulations show that the methyl groups of DMOF-TM are forming a van der Waals trap with the methylene groups from dabco, snuggly fitting the ethane. Further, rarely used high pressure coadsorption measurements, in pressure regimes that most scientific studies on hydrocarbon separation on MOFs ignore, reveal an increase in ethane capacity and selectivity for binary mixtures with increased pressures. The coadsorption measurements reveal good selectivity of 1.96 at 1000 kPa, which is verified also through IAST calculations up to 3000 kPa. This study overall showcases the opportunities that pore engineering by alkyl group incorporation and pressure increase offer to improve hydrocarbon separation in reticular materials.

14.
ACS Nano ; 15(6): 10163-10174, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34029480

RESUMO

A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al-H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.

15.
Angew Chem Int Ed Engl ; 60(2): 787-793, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926541

RESUMO

Flexible metal-organic frameworks (MOFs) show large structural flexibility as a function of temperature or (gas)pressure variation, a fascinating property of high technological and scientific relevance. The targeted design of flexible MOFs demands control over the macroscopic thermodynamics as determined by microscopic chemical interactions and remains an open challenge. Herein we apply high-pressure powder X-ray diffraction and molecular dynamics simulations to gain insight into the microscopic chemical factors that determine the high-pressure macroscopic thermodynamics of two flexible pillared-layer MOFs. For the first time we identify configurational entropy that originates from side-chain modifications of the linker as the key factor determining the thermodynamics in a flexible MOF. The study shows that configurational entropy is an important yet largely overlooked parameter, providing an intriguing perspective of how to chemically access the underlying free energy landscape in MOFs.

16.
Adv Mater ; 33(4): e2004560, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274794

RESUMO

In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2  = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2  = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.

17.
Front Chem ; 8: 544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850616

RESUMO

A metal-organic gel (MOG) similar in constitution to MIL-100 (Fe) but containing a lower connectivity ligand (5-aminoisophthalate) was integrated with an isophthalate functionalized graphene (IG). The IG acted as a structure-directing templating agent, which also induced conductivity of the material. The MOG@IG was pyrolyzed at 600°C to obtain MGH-600, a hybrid of Fe/Fe3C/FeOx enveloped by graphene. MGH-600 shows a hierarchical pore structure, with micropores of 1.1 nm and a mesopore distribution between 2 and 6 nm, and Brunauer-Emmett-Teller surface area amounts to 216 m2/g. Furthermore, the MGH-600 composite displays magnetic properties, with bulk saturation magnetization value of 130 emu/g at room temperature. The material coated on glassy carbon electrode can distinguish between molecules with the same oxidation potential, such as dopamine in presence of ascorbic acid and revealed a satisfactory limit of detection and limit of quantification (4.39 × 10-7 and 1.33 × 10-6 M, respectively) for the neurotransmitter dopamine.

18.
ACS Nano ; 14(8): 10294-10304, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658451

RESUMO

The lower limit of metal hydride nanoconfinement is demonstrated through the coordination of a molecular hydride species to binding sites inside the pores of a metal-organic framework (MOF). Magnesium borohydride, which has a high hydrogen capacity, is incorporated into the pores of UiO-67bpy (Zr6O4(OH)4(bpydc)6 with bpydc2- = 2,2'-bipyridine-5,5'-dicarboxylate) by solvent impregnation. The MOF retained its long-range order, and transmission electron microscopy and elemental mapping confirmed the retention of the crystal morphology and revealed a homogeneous distribution of the hydride within the MOF host. Notably, the B-, N-, and Mg-edge XAS data confirm the coordination of Mg(II) to the N atoms of the chelating bipyridine groups. In situ 11B MAS NMR studies helped elucidate the reaction mechanism and revealed that complete hydrogen release from Mg(BH4)2 occurs as low as 200 °C. Sieverts and thermogravimetric measurements indicate an increase in the rate of hydrogen release, with the onset of hydrogen desorption as low as 120 °C, which is approximately 150 °C lower than that of the bulk material. Furthermore, density functional theory calculations support the improved dehydrogenation properties and confirm the drastically lower activation energy for B-H bond dissociation.

19.
ACS Appl Mater Interfaces ; 12(8): 9448-9456, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31986002

RESUMO

Metal-organic frameworks with open metal sites are promising materials for gas separations. Particularly, the M2(dobdc) (dobdc4- = 2,5-dioxidobenzenedicarboxylate, M2+ = Co2+, Mn2+, Fe2+, ...) framework has been the Drosophila of this research field and has delivered groundbreaking results in terms of sorption selectivity. However, many studies focus on perfect two-component mixtures and use theoretical models, e.g., the ideal adsorbed solution theory, to calculate selectivities. Within this work, we shed light on the comparability of these selectivities with values obtained from propane/propene multicomponent measurements on the prototypical Co2(dobdc) framework, and we study the impact of impurities like water on the selectivity. Despite the expected capacity loss, the presence of water does not necessarily lead to a decreased selectivity. Density functional theory calculations of the binding energies prove that the water molecules adsorbed to the metal centers introduce new binding sites for the adsorbates.

20.
ACS Nano ; 14(2): 1745-1756, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922396

RESUMO

Magnesium borohydride (Mg(BH4)2, abbreviated here MBH) has received tremendous attention as a promising onboard hydrogen storage medium due to its excellent gravimetric and volumetric hydrogen storage capacities. While the polymorphs of MBH-alpha (α), beta (ß), and gamma (γ)-have distinct properties, their synthetic homogeneity can be difficult to control, mainly due to their structural complexity and similar thermodynamic properties. Here, we describe an effective approach for obtaining pure polymorphic phases of MBH nanomaterials within a reduced graphene oxide support (abbreviated MBHg) under mild conditions (60-190 °C under mild vacuum, 2 Torr), starting from two distinct samples initially dried under Ar and vacuum. Specifically, we selectively synthesize the thermodynamically stable α phase and metastable ß phase from the γ-phase within the temperature range of 150-180 °C. The relevant underlying phase evolution mechanism is elucidated by theoretical thermodynamics and kinetic nucleation modeling. The resulting MBHg composites exhibit structural stability, resistance to oxidation, and partially reversible formation of diverse [BH4]- species during de- and rehydrogenation processes, rendering them intriguing candidates for further optimization toward hydrogen storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...